Abstract

Flotation is not a particularly energy intensive process. Therefore, flotation optimization has traditionally been focused on grade and recovery performance improvements. However, with the growing need for energy efficiency and the dramatic increase in flotation cell size in recent years it is worth considering how well energy is utilised within flotation cells. In conventional flotation cells a certain amount of energy is required to meet the basic requirements for flotation (air dispersion, solids suspension and particle-bubble collision). This paper investigates how that energy is dissipated in the flotation cell to determine the most efficient use of the imparted energy. The distribution of turbulence and its effect on flotation kinetics are investigated in a mechanical 3m3 flotation cell for a range of hydrodynamic conditions. The effect of the different conditions are evaluated considering the Power Number (NP); a dimensionless number that is a useful hydrodynamic indicator as it represents the ratio of energy added to the flotation cell dissipated as shear to that used to generate bulk flow. Results show that flotation rate in the collection zone and the fraction of the cell with higher turbulence increases as more of the power drawn by the impeller is dissipated as shear in the impeller-stator region (higher Power Number). This should promote higher collision rates and more efficient use of the energy imparted in the flotation cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.