Abstract

The increasing share of non-programmable renewable energy sources in national energy portfolios requires a high flexibility to balance demand and offer in energy markets. Demand side management programs and microgrids will play a key role in achieving flexibility on the demand side. This paper aims at presenting the increase of flexibility that can be achieved by an industrial microgrid. On field tests were carried out in an Italian industrial microgrid, where a set of load management strategies were implemented. These strategies aim at leveraging the thermal inertia of a building using both thermal energy storage and the HVAC system. Results show that the thermal energy storage can contribute to limit the peak cooling load by up to 40 kWe for three hours, while implementing a load shifting strategy using the HVAC system can provide a temporary reduction in power consumption of 20 kWe. Results also prove that it is possible to identify the effect of a load shifting strategy using electricity consumption data sampled with a 15-minutes granularity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.