Abstract

The aim of this paper was to improve the fire retardancy of beech wood by graphene. Six fire properties, namely time to onset of ignition, time to onset of glowing, back-darkening time, back-holing time, burnt area and weight loss were measured using a newly developed apparatus with piloted ignition. A set of specimens was treated with nano-wollastonite (NW) for comparison with the results of graphene-treated specimens. Graphene and NW were mixed in a water-based paint and brushed on the front and back surface of specimens. Results demonstrated significant improving effects of graphene on times to onset of ignition and glowing. Moreover, graphene drastically decreased the burnt area. Comparison between graphene- and NW-treated specimens demonstrated the superiority of graphene in all six fire properties measured here. Fire retardancy impact of graphene was attributed to its very low reaction ability with oxygen, as well as its high and low thermal conductivity in in-plane and cross-section directions, respectively. The improved fire-retardancy properties by the addition of graphene in paint implied its effectiveness in hindering the spread of fire in buildings and structures, providing a longer timespan to extinguish a fire, and ultimately reducing the loss of life and property. Based on the improvements in fire properties achieved in graphene-treated specimens, it was concluded that graphene has a great potential to be used as a fire retardant in solid wood species.

Highlights

  • Wood is a versatile material with a myriad of applications and its plantation and harvesting are vastly studied all over the world [1,2]

  • Treatments included: control, painted, NW+painted, and NG+painted

  • Density functional theory (DFT) analysis in the present study revealed that energy of oxygen on Pure and Ni-doped graphene flake (G-flake) were −1.07 and −1.20 eV, respectively (Figures 4 and 5)

Read more

Summary

Introduction

Wood is a versatile material with a myriad of applications and its plantation and harvesting are vastly studied all over the world [1,2]. The idea of protecting solid wood, and wood and cellulose-based materials against different physical and chemical damages, and against the attacks of living micro-organisms, and fire as well, is as old as human civilizations [3,4,5,6,7]. Some methods changed the pathway of pyrolysis in wood cell-wall polymers [8]. This is considered one of the easiest and inexpensive ways for wood. In another method, the surface of the wood is improved, acting as an isolating layer. Intumescent coatings are categorized in the surface protection method.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call