Abstract

Milling performed with robots is quite demanding, even for low-strength materials, due to the high accuracy requirements, the generally high and periodically varying milling forces and the low stiffness of robots compared to CNC machine tools. In view of the generally improved recently robot stiffness, it is desirable to perform the milling operation in regions of the robot’s workspace where manipulability, both kinematic and dynamic, is highest, thereby exhausting the robot’s potential to cope with the process. In addition, by selecting the most suitable initial pose of the robot with respect to the workpiece, a reduction in the range of necessary joint torques may be reached, to the extent of alleviating the heavy requirements on the robot. Two genetic algorithms (GAs) are employed to tackle these problems. The values of several robot variables, such as joint positions and torques, which are needed by the genetic algorithms, are calculated using inverse kinematics and inverse dynamics models. In addition, initial positions and poses leading to singularities along the milling path are penalized and, thus, avoided. The first GA deals solely with robot kinematics to maximize manipulability. The second GA takes into account milling forces, which are computed numerically according to the particular milling parameters, to minimise joint torque loads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.