Abstract
The face-recognition system is among the most effective pattern recognition and image analysis techniques. This technique has met great attention from academic and industrial fields because of its extensive use in detecting the identity of individuals for monitoring systems, security and many other practical fields. In this paper, an effective method of face recognition was proposed. Ten person's faces images were selected from ORL dataset, for each person (42) image with total of (420) images as dataset. Features are extracted using principle component analysis PCA to reduce the dimensionality of the face images. Four models where created, the first one was trained using feed forward back propagation learning (FFBBL) with 40 features, the second was trained using 50 features with FFBBL, the third was trained using the same features but using Elman Neural Network. For each person (24) image used as training set for the neural networks, while the remaining images used as testing set. The results showed that the proposed method was effective and highly accurate. FFBBL give accuracy of (98.33,97.14) with (40, 50) features respectively, while Elman gives (98.33, 98.80) for with (40, 50) features respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: TELKOMNIKA (Telecommunication Computing Electronics and Control)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.