Abstract
In model predictive control, fully data-driven prediction models can be used besides common (non-)linear prediction models based on first-principles. Although no process knowledge is required while relying only on sufficient data, they suffer in their extrapolation capability which is shown in the present work for the control of an air separation unit. In order to compensate for the deficits in the extrapolation behavior, a further data source, here a digital twin, is deployed for additional data generation. The plant data set is augmented with the artificially generated data giving rise to a hybrid model in terms of data generation. It is shown that this model can significantly improve the prediction quality in former extrapolation areas of the plant data set. Even conclusions about the uncertainty behavior of the prediction model can be found.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.