Abstract

Based on thin film optics (TFO) and finite element method (FEM), we have theoretically investigated improving external quantum efficiency (EQE) by anti-reflection (AR) films constructed from subwavelength nano multi-layers (NML) of low and high index materials, where the low and high index materials are MgF <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> and Ta <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">5</sub> , respectively. This kind of NML dielectric structures have the advantages of low-cost and flexible. Three kinds of substrates have been studied here, which are glass, polyethylene naphthalate (PEN), and polyethylene terephthalate (PET), respectively. TFO theory has been used to obtain the transmittance and reflectance, which agrees well with FEM results. For NML structure, TFO is more efficient than FEM in terms of calculation time and accuracy. The average AR effects (AAREs) are about 3.69%, 3.46% and 3.07% on glass substrate, about 6.15%, 5.56% and 5.02% on PEN substrate, and about 5.06%, 4.62% and 4.17% on PET substrate, for AR bands (ARBs) 350~800 nm, 350~1100 nm and 350~1500 nm, respectively. The results also reflect that wider AR bandwidth needs more NML layers. In practice, this kind of AR films can be widely applicable to enhance the EQE of the optoelectronic devices (OEDs).

Highlights

  • Transparent conductive substrates (TCSs) are characterized by their high transmission of visible light and simultaneously very high electrical DC sheet conductivity [1]–[6]

  • TCSs can be applied as the transparent electrodes, which are the key component of optoelectronic devices (OEDs) for information and energy technologies [7]–[9]

  • External quantum efficiency (EQE) is an important physical quantity to evaluate the performance of OEDs

Read more

Summary

Introduction

Transparent conductive substrates (TCSs) are characterized by their high transmission of visible light and simultaneously very high electrical DC (direct current) sheet conductivity [1]–[6]. The theory of thin film optics (TFO) [20] is applied to study one-dimensional BPC, which is characterized as nano multi-layers (NML). It reflects that wider AR bandwidth means more NML layers, and TFO is more efficient than FEM in terms of calculation time and accuracy.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.