Abstract

To monitor the health status of the bridge, many sensors are needed to be mounted on it. Converting bridge vibration energy to electrical energy is considered as a potential solution to the problem of providing reliable electric power to these sensors. The objective of this work is to present an operable strategy for improving the electric energy output of a piezoelectric energy harvester installed on a bridge by introducing bi-stable characteristics. A bi-stable harvester is proposed. By adjusting the tip and fixed magnets, different types of potential energy can be generated, and then the harvester can exhibit the linear, mono-stable and bi-stable characteristics. In the bi-stable state, the harvester triggers snap-through motions easily and generates large outputs. The corresponding prototype was fabricated, and the experiment was carried out to validate the advantage of the bi-stable energy harvester. The experiment results show that the bi-stable energy harvester outperforms the classical linear harvester over the whole range of vehicle speed. As the vehicle speed exceeds a critical one, the snap-through motion will happen, which is beneficial to enhancing the electricity output. This conceptual design may provide guidance for promoting the performance of bridge energy harvesting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.