Abstract

Wireless Network-on-Chip (WiNoC) represents a promising emerging communication technology for addressing the scalability limitations of future manycore architectures. In a WiNoC, high-latency and power-hungry long-range multi-hop communications can be realized by performance- and energy-efficient single-hop wireless communications. However, the energy contribution of such wireless communication accounts for a significant fraction of the overall communication energy budget. This article presents a novel energy managing technique for WiNoC architectures aimed at improving the energy efficiency of the main elements of the wireless infrastructure, namely, radio-hubs. The rationale behind the proposed technique is based on selectively turning off, for the appropriate number of cycles, all the radio-hubs that are not involved in the current wireless communication. The proposed energy managing technique is assessed on several network configurations under different traffic scenarios both synthetic and extracted from the execution of real applications. The obtained results show that the application of the proposed technique allows up to 25% total communication energy saving without any impact on performance and with a negligible impact on the silicon area of the radio-hub.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.