Abstract

The demands for carbon fiber reinforced composites (CFRCs) are growing in the aviation industry for fuel consumption savings, despite the increasing risk of electromagnetic interference (EMI). In this work, polyacrylonitrile (PAN) sheets were prepared by electrospinning. Carbon nanofiber (CNF) sheets were obtained by the carbonization of PAN sheets. The laminate structures of the CF reinforced bismaleimide (BMI)-based composites were specially designed by introducing two thin CNF sheets in the upper and bottom plies, according to EMI shielding theory. The results showed that the introduction of CNF sheets led to a substantial increase in the EMI shielding effectiveness (SE) by 35.0% compared with CFRCs free of CNF sheets. The dominant EMI shielding mechanism was reflection. Noticeably, the introduction of CNF sheets did not impact the interlaminar shear strength (ILSS) of CFRCs, indicating that the strategy provided in this work was feasible for fabricating CFRCs with a high EMI shielding performance without sacrificing their mechanical properties. Therefore, the satisfactory EMI shielding and ILSS properties, coupled with a high service temperature, made BMI-based composites a promising candidate in some specific fields, such as high-speed aircrafts and missiles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.