Abstract

Meeting charging demands of large electric vehicle fleets will raise electrical load significantly and may pose challenges for today’s power system. Appropriate coordination of electric vehicle charging can reduce these threats. Acknowledging the interdependency between the transportation and the power system created by electric vehicles, we develop a charging coordination model based on German mobility data. We extend the prior work by explicitly accounting for both the temporal and the spatial dimension. We are thus able to analyze the loads from price-based EV fleet charging while at the same time accounting for distribution grid constraints. Furthermore, we propose a heuristic charging strategy based on limited trip and price information. Our results show that the sole use of time-based electricity prices for the coordination of electric vehicle charging produces high load spikes independent of the charging strategies and power levels. These peaks are induced by simultaneous charging activity and may cause stability problems within distribution grids in residential areas. To mitigate these load spikes, we introduce a spatial price component that reflects local capacity utilization. These local prices induce both a temporal and spatial shift of charging activity that mitigates the load spikes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call