Abstract

One of the deficiencies of mutual information is its poor capacity to measure association of words with unsymmetrical co-occurrence, which has large amounts for multi-word expression in texts. Moreover, threshold setting, which is decisive for success of practical implementation of mutual information for multi-word extraction, brings about many parameters to be predefined manually in the process of extracting multiword expressions with different number of individual words. In this paper, we propose a new method as EMICO (Enhanced Mutual Information and Collocation Optimization) to extract substantival multiword expression from text. Specifically, enhanced mutual information is proposed to measure the association of words and collocation optimization is proposed to automatically determine the number of individual words contained in a multiword expression when the multiword expression occurs in a candidate set. Our experiments showed that EMICO significantly improves the performance of substantival multiword expression extraction in comparison with a classic extraction method based on mutual information.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.