Abstract

The simultaneous improvement of quercetin (QUE) processing stability and bioavailability has always presented a technical challenge during food processing. This study constructed a water-soluble carrier consisting of oleic acid (OA) and sodium caseinate (NaCas) in an ultrasonic field and investigated the effect of its encapsulation on improving the thermal stability and bioaccessibility of QUE. The results showed that the OA and NaCas generated uniform, stable water-soluble particles with a poly dispersity index (PDI) below 0.3 and an absolute value of Zeta potential above 30 mV in optimized conditions (a protein concentration of 4 mg/mL, ultrasonic power of 300 W, and ultrasonic time of 5 min). OA-NaCas mass ratio of 1:40, 1:15, 1:8, and 1:4 was selected for QUE loading to compare its encapsulation effect at different mass ratios. Compared with the NaCas without OA, the QUE embedding rate reached 95 % at OA-NaCas mass ratios of 1:15 and 1:8. In addition, the transmission electron microscopy (TEM) images confirmed that QUE was embedded in OA-NaCas particles, forming regular, spherical OA-NaCas-QUE particles at mass ratios or 1:15 and 1:8. Next, when heated at 80 °C for 120 min, the OA-NaCas (OA:NaCas, 1:15, 1:8, and W/W) particles significantly improved the QUE retention rate. The simulated in vitro gastrointestinal digestion experiments showed that the QUE bioaccessibility increased from 25 % to more than 60 % when it was encapsulated in OA-NaCas (OA:NaCas, 1:15, 1:8, and W/W) particles. These results indicated that the OA-NaCas complex was suitable as a hydrophilic delivery carrier of fat-soluble polyphenols.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call