Abstract

AbstractCommon practices for invasive species control and management include physical, chemical, and biological approaches. The first two approaches have clear limitations and may lead to unintended (negative) consequences, unless carefully planned and implemented. For example, physical removal rarely completely eradicates the targeted invasive species and can cause disturbances that facilitate new invasions by nonnative species from nearby habitats. Chemical treatments can harm native, and especially rare, species through unanticipated side effects. Biological methods may be classified as biocontrol and the ecological approach. Similar to physical and chemical methods, biocontrol also has limitations and sometimes leads to unintended consequences. Therefore, a relatively safer and more practical choice may be the ecological approach, which has two major components: (1) restoration of native species and (2) biomass manipulation of the restored community, such as selective grazing or prescribed burning (to achieve and maintain viable population sizes). Restoration requires well-planned and implemented planting designs that consider alpha-, beta-, and gamma-diversity and the abundance of native and invasive component species at local, landscape, and regional levels. Given the extensive destruction or degradation of natural habitats around the world, restoration could be most effective for enhancing ecosystem resilience and resistance to biotic invasions. At the same time, ecosystems in human-dominated landscapes, especially those newly restored, require close monitoring and careful intervention (e.g., through biomass manipulation), especially when successional trajectories are not moving as intended. Biomass management frequently uses prescribed burning, grazing, harvesting, and thinning to maintain overall ecosystem health and sustainability. Thus, the resulting optimal, balanced, and relatively stable ecological conditions could more effectively limit the spread and establishment of invasive species. Here we review the literature (especially within the last decade) on ecological approaches that involve biodiversity, biomass, and productivity, three key community/ecosystem variables that reciprocally influence one another. We focus on the common and most feasible ecological practices that can aid in resisting new invasions and/or suppressing the dominance of existing invasive species. We contend that, because of the strong influences from neighboring areas (i.e., as exotic species pools), local restoration and management efforts in the future need to consider the regional context and projected climate changes.

Highlights

  • Restoration merely meant returning vegetation to a predisturbance condition, a characteristic state existing before its degradation or destruction

  • Restoration has been increasingly used to provide much-needed ecosystem services such as sequestering carbon (Carter 2013) and providing wood, biofuels, and other products, partly because the sites needing restoration are often close to human populations and undergo greater ongoing disturbances and degradation

  • An important lesson from past experience is that successful restoration needs careful and integrated management as a necessary follow-up. To address this urgent need, we review and synthesize the new developments in both basic and applied ecology to fill the critical information gap in the application of new scientific findings

Read more

Summary

Introduction

Restoration merely meant returning vegetation to a predisturbance condition, a characteristic state existing before its degradation or destruction. Guidance for such undertakings was often drawn from “reference conditions” on existing sites or those that were hypothesized to have existed in the past. Restoration has been increasingly used to provide much-needed ecosystem services such as sequestering carbon (Carter 2013) and providing wood, biofuels, and other products, partly because the sites needing restoration are often close to human populations and undergo greater ongoing disturbances and degradation IP address: 52.91.188.81, on 02 Nov 2021 at 16:04:09, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

Objectives
Methods
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call