Abstract

Abstract. The region of southern Africa (SA) has a fragile food economy and is vulnerable to frequent droughts. Interventions to mitigate food insecurity impacts require early warning of droughts – preferably as early as possible before the harvest season (typically starting in April) and lean season (typically starting in November). Hydrologic monitoring and forecasting systems provide a unique opportunity to support early warning efforts, since they can provide regular updates on available root-zone soil moisture (RZSM), a critical variable for crop yield, and provide forecasts of RZSM by combining the estimates of antecedent soil moisture conditions with climate forecasts. For SA, this study documents the predictive capabilities of RZSM products from the recently developed NASA Hydrological Forecasting and Analysis System (NHyFAS). Results show that the NHyFAS products would have identified the regional severe drought event – which peaked during December–February of 2015–2016 – at least as early as 1 November 2015. Next, it is shown that during 1982–2016, February RZSM (Feb-RZSM) forecasts (monitoring product) available in early November (early March) have a correlation of 0.49 (0.79) with the detrended regional crop yield. It is also found that when the February RZSM forecast (monitoring product) available in early November (early March) is indicated to be in the lowest tercile, the detrended regional crop yield is below normal about two-thirds of the time (always), at least over the sample years considered. Additionally, it is shown that the February RZSM forecast (monitoring product) can provide “out-of-sample” crop yield forecasts with comparable (substantially better with 40 % reduction in mean error) skill to December–February ENSO. These results indicate that the NHyFAS products can effectively support food insecurity early warning in the SA region. Finally, since a framework similar to NHyFAS can be used to provide RZSM monitoring and forecasting products over other regions of the globe, this case study also demonstrates potential for supporting food insecurity early warning globally.

Highlights

  • Southern Africa (SA) is vulnerable to food insecurity

  • We begin the evaluation of the suitability of NASA Hydrological Forecasting and Analysis System (NHyFAS) in supporting food insecurity early warning in the SA region by examining how this system would have performed during the 2015–2016 event

  • NHyFAS operationally provides the seasonal forecasts every month, for the purpose of this study, we focus on the forecast initialized on 1 November and 1 January of the 2015–2016 event

Read more

Summary

Introduction

Southern Africa (SA) is vulnerable to food insecurity. Droughts driven by climate stressors (e.g., precipitation and temperature) are among the important drivers of food insecurity (Misselhorn, 2005; Conway et al, 2015). The primary rainy season in SA spans from October to March, which overlaps the main planting season from October to February (Fig. 1a). This period covers the lean season, when food supplies from the prior year’s harvest become limited. The prices typically start to rise after the harvest season and reach their peak just before or near the start of the harvest season. This correspondence between the prices and crop cycles highlights the region’s climate-related sensitivity to food insecurity. In the case of below-normal crop yield, the food prices rise even more than normal, reducing access to food for the poorest of the population

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call