Abstract

AimsDiversified cardiovascular/non-cardiovascular multi-morbid risk and efficient machine learning algorithms may facilitate improvements in stroke risk prediction, especially in newly diagnosed non-anticoagulated atrial fibrillation (AF) patients where initial decision-making on stroke prevention is needed. Therefore the aims of this article are to study common clinical risk assessment for stroke risk prediction in AF/non-AF cohorts together with cardiovascular/ non-cardiovascular multi-morbid conditions; to improve stroke risk prediction using machine learning approaches; and to compare the improved clinical prediction rules for multi-morbid conditions using machine learning algorithmsMethods and resultsWe used cohort data from two health plans with 6 457 412 males/females contributing 14,188,679 person-years of data. The model inputs consisted of a diversified list of comorbidities/demographic/ temporal exposure variables, with the outcome capturing stroke event incidences. Machine learning algorithms used two parametric and two nonparametric techniques. The best prediction model was derived on the basis of non-linear formulations using machine learning criteria, with the highest c-index was obtained for logistic regression [0.892; 95% confidence interval (CI) 0.886–0.898] with consistency on external validation (0.891; 95% CI 0.882–0.9). These were significantly higher than those based on the conventional stroke risk scores (CHADS2: 0.7488, 95% CI 0.746–0.7516; CHA2DS2-VASc: 0.7801, 95% CI 0.7772–0.7831) and multi-morbid index (0.8508, 95% CI 0.8483–0.8532). The machine learning algorithm had good internal and external calibration and net benefit values.ConclusionIn this large cohort of newly diagnosed non-anticoagulated AF/non-AF patients, large improvements in stroke risk prediction can be shown with cardiovascular/non-cardiovascular multi-morbid index and a machine learning approach accounting for dynamic changes in risk factors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.