Abstract

This paper addresses the dynamic recognition of basic facial expressions in videos using feature subset selection. Feature selection has been already used by some static classifiers where the facial expression is recognized from one single image. Past work on dynamic facial expression recognition has emphasized the issues of feature extraction and classification, however, less attention has been given to the critical issue of feature selection in the dynamic scenario. The main contributions of the paper are as follows. First, we show that dynamic facial expression recognition can be casted into a classical classification problem. Second, we combine a facial dynamics extractor algorithm with a feature selection scheme for generic classifiers. We show that the paradigm of feature subset selection with a wrapper technique can improve the dynamic recognition of facial expressions. We provide evaluations of performance on real video sequences using five standard machine learning approaches: Support Vector Machines, K Nearest Neighbor, Naive Bayes, Bayesian Networks, and Classification Trees.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.