Abstract

Simulations and diagnostics of high-energy-density plasmas and warm dense matter rely on models of material response properties, both static and dynamic (frequency-dependent). Here, we systematically investigate variations in dynamic electron–ion collision frequencies ν(ω) in warm dense matter using data from a self-consistent-field average-atom model. We show that including the full quantum density of states, strong collisions, and inelastic collisions lead to significant changes in ν(ω). These changes result in red shifts and broadening of the plasmon peak in the dynamic structure factor, an effect observable in x-ray Thomson scattering spectra, and modify stopping powers around the Bragg peak. These changes improve the agreement of computationally efficient average-atom models with first-principles time-dependent density functional theory in warm dense aluminum, carbon, and deuterium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call