Abstract

Adverse drug reactions (ADRs) are a major public health concern, causing over 100,000 fatalities in the United States every year with an annual cost of $136 billion. Early detection and accurate prediction of ADRs is thus vital for drug development and patient safety. Multiple scientific disciplines, namely pharmacology, pharmacovigilance, and pharmacoinformatics, have been addressing the ADR problem from different perspectives. With the same goal of improving drug safety, this article summarizes and links the research efforts in the multiple disciplines into a single framework from comprehensive understanding of the interactions between drugs and biological system and the identification of genetic and phenotypic predispositions of patients susceptible to higher ADR risks and finally to the current state of implementation of medication-related decision support systems. We start by describing available computational resources for building drug-target interaction networks with biological annotations, which provides a fundamental knowledge for ADR prediction. Databases are classified by functions to help users in selection. Post-marketing surveillance is then introduced where data-driven approach can not only enhance the prediction accuracy of ADRs but also enables the discovery of genetic and phenotypic risk factors of ADRs. Understanding genetic risk factors for ADR requires well organized patient genetics information and analysis by pharmacogenomic approaches. Finally, current state of clinical decision support systems is presented and described how clinicians can be assisted with the integrated knowledgebase to minimize the risk of ADR. This review ends with a discussion of existing challenges in each of disciplines with potential solutions and future directions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.