Abstract
Document-level relation extraction (RE) has attracted considerable attention, because a large number of relational facts are expressed in multiple sentences. Recently, encoder-aggregator based models have become promising for document-level RE. However, these models have two shortcomings: (i) they cannot obtain contextualized representations of a mention by low computational cost, when the mention is involved in different entity pairs; (ii) they ignore the different weights for the mention pairs of a target entity pair. To tackle the above two problems, in this paper, we propose a novel encoder-attender-aggregator model, which introduces two attenders between the encoder and aggregator. Specifically, a mutual attender is first employed on the selected head and tail mentions to efficiently produce contextualized mention representations. Then, an integration attender is utilized to weight the mention pairs of a target entity pair. Extensive experiments on two document-level RE datasets show that the proposed model performs better than the state-of-the-art baselines. Our codes are publicly available at “https://github.com/nefujiangping/EncAttAgg”.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.