Abstract
Identifying DNA N6-methyladenine (6mA) sites is significantly important to understanding the function of DNA. Many deep learning-based methods have been developed to improve the performance of 6mA site prediction. In this study, to further improve the performance of 6mA site prediction, we propose a new meta method, called Co6mA, to integrate bidirectional long short-term memory (BiLSTM), convolutional neural networks (CNNs), and self-attention mechanisms (SAM) via assembling two different deep learning-based models. The first model developed in this study is called CBi6mA, which is composed of CNN, BiLSTM, and fully connected modules. The second model is borrowed from LA6mA, which is an existing 6mA prediction method based on BiLSTM and SAM modules. Experimental results on two independent testing sets of different model organisms, i.e., Arabidopsis thaliana and Drosophila melanogaster, demonstrate that Co6mA can achieve an average accuracy of 91.8%, covering 89% of all 6mA samples while achieving an average Matthews correlation coefficient value (0.839), which is higher than the second-best method DeepM6A.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.