Abstract

In technical systems the analysis of similar load situations is a promising technique to gain information about the system’s state, its health or wearing. Very often, load situations are challenging to be defined by hand. Hence, these situations need to be discovered as recurrent patterns within multivariate time series data of the system under consideration. Unsupervised algorithms for finding such recurrent patterns in multivariate time series must be able to cope with very large data sets because the system might be observed over a very long time. In our previous work we identified discretization-based approaches to be very interesting for variable length pattern discovery because of their low computing time due to the simplification (symbolization) of the time series. In this paper we propose additional preprocessing steps for symbolic representation of time series aiming for enhanced multivariate pattern discovery. Beyond that we show the performance (quality and computing time) of our algorithms in a synthetic test data set as well as in a real life example with 100 millions of time points. We also test our approach with increasing dimensionality of the time series.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.