Abstract
To investigate the application value of a computer-aided diagnosis (CAD) system based on deep learning (DL) of rib fractures for night shifts in radiology department. Chest computed tomography (CT) images and structured reports were retrospectively selected from the picture archiving and communication system (PACS) for 2,332 blunt chest trauma patients. In all CT imaging examinations, two on-duty radiologists (radiologists I and II) completed reports using three different reading patterns namely, P1 = independent reading during the day shift; P2 = independent reading during the night shift; and P3 = reading with the aid of a CAD system as the concurrent reader during the night shift. The locations and types of rib fractures were documented for each reading. In this study, the reference standard for rib fractures was established by an expert group. Sensitivity and false positives per scan (FPS) were counted and compared among P1, P2, and P3. The reference standard verified 6,443 rib fractures in the 2,332 patients. The sensitivity of both radiologists decreased significantly in P2 compared to that in P1 (both p < 0.017). The sensitivities of both radiologists showed no statistical difference between P3 and P1 (both p > 0.017). Radiologist I's FPS increased significantly in P2 compared to P1 (p < 0.017). The FPS of radiologist I showed no statistically significant difference between P3 and P1 (p > 0.017). The FPS of Radiologist II showed no statistical difference among all three reading patterns (p > 0.05). DL-based CAD systems can be integrated into the workflow of radiology departments during the night shift to improve the diagnostic performance of CT rib fractures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.