Abstract

The differential global navigation satellite system (DGNSS) is an enhancement system that is widely used to improve the accuracy of single-frequency receivers. However, distance-dependent errors are not considered in conventional DGNSS, and DGNSS accuracy decreases when baseline length increases. In network real-time kinematic (RTK) positioning, distance-dependent errors are accurately modelled to enable ambiguity resolution on the user side, and standard Radio Technical Commission for Maritime Services (RTCM) formats have also been developed to describe the spatial characteristics of distance-dependent errors. However, the network RTK service was mainly developed for carrier-phase measurements on professional user receivers. The purpose of this study was to modify the local-area DGNSS through the use of network RTK corrections. Distance-dependent errors can be reduced, and accuracy for a longer baseline length can be improved. The results in the low-latitude areas showed that the accuracy of the modified DGNSS could be improved by more than 50% for a 17.9 km baseline during solar active years. The method in this paper extends the use of available network RTK corrections with high accuracy to normal local-area DGNSS applications.

Highlights

  • Accepted: 19 April 2021The global navigation satellite system (GNSS) suffers from various errors due to the ionosphere, troposphere, and satellite orbit and clock

  • These errors can be significantly reduced with the application of differential GNSS (DGNSS) corrections generated from a nearby reference station at a known location

  • Raw measurements are available from smartphones, and DGNSS is a basic technique that improves the accuracy of smartphone positioning [1]

Read more

Summary

Introduction

The global navigation satellite system (GNSS) suffers from various errors due to the ionosphere, troposphere, and satellite orbit and clock. These errors can be significantly reduced with the application of differential GNSS (DGNSS) corrections generated from a nearby reference station at a known location. Since the DGNSS is easy to use, it is supported by most low-cost GNSS receivers. The accuracy of DGNSS is mainly affected by uncommon errors and decorrelation errors. Receiver noise and multipath effects on the user side are not common with these at the reference station; these factors determine the accuracy level of DGNSS. Aside from uncommon errors, temporal and spatial decorrelation errors affect DGNSS performance

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.