Abstract
We show that the quality of density functional theory (DFT) predictions for the relative stabilities of polymorphs of crystalline para-diiodobenzene (PDIB) is dramatically improved through a simple two-body correction using wavefunction-based electronic structure theory. PDIB has two stable polymorphs under ambient conditions, and like Hongo et al. [J. Phys. Chem. Lett., 1, 1789 (2010)] we find that DFT makes wildly variable predictions of the relative stabilities, depending on the approximate functional used. The two-body corrected scheme, using Grimme's spin-scaled variant of second-order Møller-Plesset perturbation theory and any of the tested density functionals, predicts the α-polymorph to be more stable, consistent with experiment, and produces a relative stability that agrees with the benchmark quantum Monte-Carlo results of Hongo et al. within statistical uncertainty.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.