Abstract
In recent years, deep learning-based plant disease classification has been widely developed. However, it is challenging to collect sufficient annotated image data to effectively train deep learning models for plant disease recognition. The attention mechanism in deep learning assists the model to focus on the informative data segments and extract the discriminative features of inputs to enhance training performance. This paper investigates the Convolutional Block Attention Module (CBAM) to improve classification with CNNs, which is a lightweight attention module that can be plugged into any CNN architecture with negligible overhead. Specifically, CBAM is applied to the output feature map of CNNs to highlight important local regions and extract more discriminative features. Well-known CNN models (i.e. EfficientNetB0, MobileNetV2, ResNet50, InceptionV3, and VGG19) were applied to do transfer learning for plant disease classification and then fine-tuned by a publicly available plant disease dataset of foliar diseases in pear trees called DiaMOS Plant. Amongst others, this dataset contains 3006 images of leaves affected by different stress symptoms. Among the tested CNNs, EfficientNetB0 has shown the best performance. EfficientNetB0+CBAM has outperformed EfficientNetB0 and obtained 86.89% classification accuracy. Experimental results show the effectiveness of the attention mechanism to improve the recognition accuracy of pre-trained CNNs when there are few training data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.