Abstract
Modern machine learning (ML) and deep learning (DL) techniques using high-dimensional data representations have helped accelerate the materials discovery process by efficiently detecting hidden patterns in existing datasets and linking input representations to output properties for a better understanding of the scientific phenomenon. While a deep neural network comprised of fully connected layers has been widely used for materials property prediction, simply creating a deeper model with a large number of layers often faces with vanishing gradient problem, causing a degradation in the performance, thereby limiting usage. In this paper, we study and propose architectural principles to address the question of improving the performance of model training and inference under fixed parametric constraints. Here, we present a general deep-learning framework based on branched residual learning (BRNet) with fully connected layers that can work with any numerical vector-based representation as input to build accurate models to predict materials properties. We perform model training for materials properties using numerical vectors representing different composition-based attributes of the respective materials and compare the performance of the proposed models against traditional ML and existing DL architectures. We find that the proposed models are significantly more accurate than the ML/DL models for all data sizes by using different composition-based attributes as input. Further, branched learning requires fewer parameters and results in faster model training due to better convergence during the training phase than existing neural networks, thereby efficiently building accurate models for predicting materials properties.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.