Abstract

The highly productive whole-cell biotransformation of d-fructose to d-mannitol with recombinant, resting cells of Escherichia coli BL21(DE3) requires the combined expression of mdh, fdh and glf which encode mannitol and formate dehydrogenases and a sugar facilitator, respectively. However, long-term stability of the system was restricted, possibly due to loss of the cofactor NAD, high concentrations of formate, formation of CO 2 affecting the internal pH of the cells, accumulation of high intracellular concentrations of d-mannitol, and export of d-mannitol. Downstream of the mdh gene of Leuconostoc pseudomesenteroides, we identified an open reading frame encoding for a putative mannitol permease. The gene was cloned and expressed in E. coli. Biochemical analyses revealed an activity as secondary carrier for d-fructose. Therefore, the carrier was named FupL and participation in d-mannitol transport was excluded. In biotransformation experiments, the productivity of d-mannitol formation obtained with the strain expressing the additional fupL gene was enhanced by 20%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.