Abstract

Controlling the composition and microstructure of the solid electrolyte interphase (SEI) layer is critical to improving the cycling stability of the high-energy-density lithium-metal electrode. It is a quite tricky task to control the properties of the SEI layer which is conventionally formed by the chemical reactions between a Li metal and the additives. Herein, we develop a new route to synthesize a lithium-compatible sol of the sulfide electrolyte Li3PS4, so that a Li3PS4 artificial SEI layer with a controllable nanoscale thickness and high phase purity can be prepared by spin-coating. The layer stabilizes the lithium/electrolyte interface by homogenizing the Li-ion flux, preventing the parasitic reactions, and alleviating concentration polarization. Consequently, a symmetrical cell with the Li3PS4-modified lithium electrodes can achieve stable lithium plating/stripping for 800 h at a current density of 1 mA cm-2. The Li-S batteries assembled with the Li3PS4-protected Li anodes show better capacity retention than their bare Li counterparts, whose average decay rate from the 240th cycle to the 800th cycle is only 0.004%/cycle. In addition, the Li3PS4 layer improves the rate capacity of the batteries, significantly enhancing the capacity from 175 to 682 mA h g-1 at a 2 C rate. The spin-coated Li3PS4 artificial SEI layer provides a new strategy to develop high-performance Li metal batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.