Abstract

Face recognition algorithms are generally trained for matching high-resolution images and they perform well for similar resolution test data. However, the performance of such systems degrades when a low-resolution face image captured in unconstrained settings, such as videos from cameras in a surveillance scenario, are matched with high-resolution gallery images. The primary challenge, here, is to extract discriminating features from limited biometric content in low-resolution images and match it to information rich high-resolution face images. The problem of cross-resolution face matching is further alleviated when there is limited labeled positive data for training face recognition algorithms. In this paper, the problem of cross-resolution face matching is addressed where low-resolution images are matched with high-resolution gallery. A co-transfer learning framework is proposed, which is a cross-pollination of transfer learning and co-training paradigms and is applied for cross-resolution face matching. The transfer learning component transfers the knowledge that is learnt while matching high-resolution face images during training to match low-resolution probe images with high-resolution gallery during testing. On the other hand, co-training component facilitates this transfer of knowledge by assigning pseudolabels to unlabeled probe instances in the target domain. Amalgamation of these two paradigms in the proposed ensemble framework enhances the performance of cross-resolution face recognition. Experiments on multiple face databases show the efficacy of the proposed algorithm and compare with some existing algorithms and a commercial system. In addition, several high profile real-world cases have been used to demonstrate the usefulness of the proposed approach in addressing the tough challenges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.