Abstract

We investigate the performance of polarimetric imaging in the long-wave infrared (LWIR) spectrum for cross-modal face recognition. For this work, polarimetric imagery is generated as stacks of three components: the conventional thermal intensity image (referred to as S0), and the two Stokes images, S1 and S2, which contain combinations of different polarizations. The proposed face recognition algorithm extracts and combines local gradient magnitude and orientation information from S0, S1, and S2 to generate a robust feature set that is well-suited for cross-modal face recognition. Initial results show that polarimetric LWIR-to-visible face recognition achieves an 18% increase in Rank-1 identification rate compared to conventional LWIR-to-visible face recognition. We conclude that a substantial improvement in automatic face recognition performance can be achieved by exploiting the polarization-state of radiance, as compared to using conventional thermal imagery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.