Abstract

Cranial vault remodeling (CVR) for unicoronal synostosis is challenging due to the asymmetric nature of the deformity. Computer-automated surgical planning has demonstrated success in reducing the subjectivity of decision making in CVR in symmetric subtypes. This proof of concept study presents a novel method using Boolean functions and image registration to automatically suggest surgical steps in asymmetric craniosynostosis. The objective of this study is to introduce automated surgical planning into a CVR virtual workflow for an asymmetric craniosynostosis subtype. Virtual workflows were developed using Geomagic Freeform Plus software. Hausdorff distances and color maps were used to compare reconstruction models to the preoperative model and a control skull. Reconstruction models were rated as high or low performing based on similarity to the normal skull and the amount of advancement of the frontal bone (FB) and supra-orbital bar (SOB). Fifteen partially and fully automated workflow iterations were carried out. FB and SOB advancement ranged from 3.08 to 10.48mm, and -1.75 to 7.78mm, respectively. Regarding distance from a normal skull, models ranged from .85 to 5.49mm at the FB and 5.40 to 10.84mm at the SOB. An advancement of 8.43mm at the FB and 7.73mm at the SOB was achieved in the highest performing model, and it differed to a comparative normal skull by .02mm at the FB and .48mm at the SOB. This is the first known attempt at developing an automated virtual surgical workflow for CVR in asymmetric craniosynostosis. Key regions of interest were outlined using Boolean operations, and surgical steps were suggested using image registration. These techniques improved post-operative skull morphology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.