Abstract

AbstractUltrafine‐grained (UFG) Al‐11mass%Si alloy, processed by multi‐pass equal‐channel angular pressing (ECAP) at 573 K, was investigated on corrosion behavior in 0.6 M NaCl solution. Potentiodynamic polarization tests and scanning electron microscopy observation showed that a large number of ECAP passes resulted in lower corrosion current density, more positive corrosion potential, and rather smooth corroded surface with shallow corrosion pits. The uniform distribution of fine secondary‐phase particles on UFG Al matrix weakened the susceptibility to pitting corrosion while inhibited general microgalvanic reactions. The present results indicate that grain refinement of aluminum matrix to the UFG state and uniform redistribution of broken particles (including eutectic silicon and secondary phases), via severe plastic deformation at elevated temperature undergoing dynamic recrystallization, can significantly improve the corrosion resistance of Al alloys, besides the known exceptional mechanical advantages. The simple and effective ECAP procedure makes UFG Al alloys more attractive for high strength structural application in corrosive environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.