Abstract

Processing additive plays an important role in the standard operation procedures for fabricating top performing polymer solar cells (PSCs) through efficient interactions with key photovoltaic materials. However, improving interaction study of acceptor materials to high performance halogenated aromatic additives such as diiodobenzene (DIB) is a widely neglected route for molecular engineering toward more efficient device performances. In this work, two novel Y-type acceptor molecules of BTP-TT and BTP-TTS with different aromatic side chains on the outer positions are designed and synthesized. The resulting aromatic side chains significantly enhanced the interactions between the acceptor molecules and DIB through an arene/halogenated arene interaction, which improved the crystallinity of the acceptor molecules and induced a polymorph with better photovoltaic performances. Thus, high power conversion efficiencies (PCEs) of 18.04% and 19.22% are achieved in binary and ternary blend devices using BTP-TTS as acceptor and DIB as additive. Aromatic side chain engineering for improving additive interactions is proved to be an effective strategy for achieving much higher performance photovoltaic materials and devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call