Abstract

A Computational Fluid Dynamic (CFD) study based on Reynolds Averaged Navier–Stokes (RANS) approach is carried out to predict the mean velocity field and the heat transfer rate of an impinging jet in cross-flow configuration on a heated wall-mounted cube. Targeting an electronic cooling configuration, the aim is to investigate the effect of geometrical modification of the component on the cooling effectiveness. For the same cross flow Reynolds number ReH=3410, three levels of impinging jets are computed as well as a case without impinging jet that will serve as baseline case for comparison. The results from the RANS computation are compared to experimental data from published scientific literature. The validation shows qualitatively good agreement and almost all flow structures are well reproduced by the computation. In an attempt to optimize the wall heat flux over the cube surface, a new geometry is proposed without sharp corners on the top cube face. Numerical results show that with minor geometrical modification (chamfer), the fluid flow structure around the electronic component is radically transformed and the heat transfer rate can be improved. The highest cooling effectiveness improvement is realize for the highest Reynolds number ratio Rej/ReH=1.5 and for the chamfer height of 4mm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call