Abstract

The conformer generator ETKDG is a stochastic search method that utilizes distance geometry together with knowledge derived from experimental crystal structures. It has been shown to generate good conformers for acyclic, flexible molecules. This work builds on ETKDG to improve conformer generation of molecules containing small or large aliphatic (i.e., non-aromatic) rings. For one, we devise additional torsional-angle potentials to describe small aliphatic rings and adapt the previously developed potentials for acyclic bonds to facilitate the sampling of macrocycles. However, due to the larger number of degrees of freedom of macrocycles, the conformational space to sample is much broader than for small molecules, creating a challenge for conformer generators. We therefore introduce different heuristics to restrict the search space of macrocycles and bias the sampling toward more experimentally relevant structures. Specifically, we show the usage of elliptical geometry and customizable Coulombic interactions as heuristics. The performance of the improved ETKDG is demonstrated on test sets of diverse macrocycles and cyclic peptides. The code developed here will be incorporated into the 2020.03 release of the open-source cheminformatics library RDKit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.