Abstract

Objective.Cone-Beam CT (CBCT) often results in severe image artifacts and inaccurate HU values, meaning poor quality CBCT images cannot be directly applied to dose calculation in radiotherapy. To overcome this, we propose a cycle-residual connection with a dilated convolution-consistent generative adversarial network (Cycle-RCDC-GAN). Approach. The cycle-consistent generative adversarial network (Cycle-GAN) was modified using a dilated convolution with different expansion rates to extract richer semantic features from input images. Thirty pelvic patients were used to investigate the effect of synthetic CT (sCT) from CBCT, and 55 head and neck patients were used to explore the generalizability of the model. Three generalizability experiments were performed and compared: the pelvis trained model was applied to the head and neck; the head and neck trained model was applied to the pelvis, and the two datasets were trained together. Main results. The mean absolute error (MAE), the root mean square error (RMSE), peak signal to noise ratio (PSNR), the structural similarity index (SSIM), and spatial nonuniformity (SNU) assessed the quality of the sCT generated from CBCT. Compared with CBCT images, the MAE improved from 28.81 to 18.48, RMSE from 85.66 to 69.50, SNU from 0.34 to 0.30, and PSNR from 31.61 to 33.07, while SSIM improved from 0.981 to 0.989. The sCT objective indicators of Cycle-RCDC-GAN were better than Cycle-GAN’s. The objective metrics for generalizability were also better than Cycle-GAN’s. Significance. Cycle-RCDC-GAN enhances CBCT image quality and has better generalizability than Cycle-GAN, which further promotes the application of CBCT in radiotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call