Abstract
Abstract A Block Matrix based Multiple Regularization (BMMR) technique is proposed for improving conductivity image quality in Electrical Impedance Tomography (EIT). The response matrix (JTJ) has been partitioned into several sub-block matrices and the largest element of each sub-block matrix has been chosen as regularization parameter for the nodes contained by that sub-block. Simulated boundary data are generated for circular domains with circular inhomogeneities of different geometry and the conductivity images are reconstructed in a Model Based Iterative Image Reconstruction (MoBIIR) algorithm. Conductivity images are reconstructed with BMMR technique and the results are compared with the Single-step Tikhonov Regularization (STR) and modified Levenberg-Marquardt Regularization (LMR) methods. Results show that the BMMR technique improves the impedance image and its spatial resolution for single and multiple inhomogeneity phantoms of different geometries. It is observed that the BMMR technique reduces the projection error as well as the solution error and improves the conductivity reconstruction in EIT. Results also show that the BMMR method improves the image contrast and inhomogeneity conductivity profile by reducing background noise for all the phantom configurations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.