Abstract

Edge-based color constancy methods make use of image derivatives to estimate the illuminant. However, different edge types exist in real-world images, such as material, shadow, and highlight edges. These different edge types may have a distinctive influence on the performance of the illuminant estimation. Therefore, in this paper, an extensive analysis is provided of different edge types on the performance of edge-based color constancy methods. First, an edge-based taxonomy is presented classifying edge types based on their photometric properties (e.g., material, shadow-geometry, and highlights). Then, a performance evaluation of edge-based color constancy is provided using these different edge types. From this performance evaluation, it is derived that specular and shadow edge types are more valuable than material edges for the estimation of the illuminant. To this end, the (iterative) weighted Gray-Edge algorithm is proposed in which these edge types are more emphasized for the estimation of the illuminant. Images that are recorded under controlled circumstances demonstrate that the proposed iterative weighted Gray-Edge algorithm based on highlights reduces the median angular error with approximately 25 percent. In an uncontrolled environment, improvements in angular error up to 11 percent are obtained with respect to regular edge-based color constancy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.