Abstract
Cu is a promising electrocatalyst in CO2 reduction reaction (CO2RR) to high-value C2+ products. However, as important C-C coupling active sites, the Cu+ species is usually unstable under reduction conditions. How atomic dopants affect the performance of Cu-based catalysts is interesting to be studied. Herein, we first calculated the difference between the thermodynamic limiting potentials of CO2RR and the hydrogen evolution reaction, as well as the *CO binding energy over Cu2O doped with different metals, and the results indicated that doping atomic Gd into Cu2O could improve the performance of the catalyst effectively. On the basis of the theoretical study, we designed Gd1/CuOx catalysts. The distinctive electronic structure and large ion radii of Gd not only keep the Cu+ species stable during the reaction but also induce tensile strain in Gd1/CuOx, resulting in excellent performance of the catalysts for electroreduction of CO2 to C2+ products. The Faradic efficiency of C2+ products could reach 81.4% with a C2+ product partial current density of 444.3 mA cm-2 at -0.8 V vs a reversible hydrogen electrode. Detailed experimental and theoretical studies revealed that Gd doping enhanced CO2 activation on the catalyst, stabilized the key intermediate O*CCO, and reduced the energy barrier of the C-C coupling reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.