Abstract
Handwriting recognition is a challenge that interests many researchers around the world. As an exception, handwritten Arabic script has many objectives that remain to be overcome, given its complex form, their number of forms which exceeds 100 and its cursive nature. Over the past few years, good results have been obtained, but with a high cost of memory and execution time. In this paper we propose to improve the capacity of bidirectional gated recurrent unit (BGRU) to recognize Arabic text. The advantages of using BGRUs is the execution time compared to other methods that can have a high success rate but expensive in terms of time and memory. To test the recognition capacity of BGRU, the proposed architecture is composed by 6 convolutional neural network (CNN) blocks for feature extraction and 1 BGRU + 2 dense layers for learning and test. The experiment is carried out on the entire database of institut für nachrichtentechnik/ecole nationale d’ingénieurs de Tunis (IFN/ENIT) without any preprocessing or data selection. The obtained results show the ability of BGRUs to recognize handwritten Arabic script.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.