Abstract

Load forecasting is more important than ever to enable new monitor and control functionalities of distribution networks aiming to mitigate the impact of the energy transition. Load forecasting at medium voltage (MV) level is becoming more challenging, because these load profiles become more stochastic due to the increasing penetration of photovoltaic (PV) generation in distribution networks. This work combines medium to low voltage (MV/LV) transformer loadings measured with advanced metering infrastructure (AMI) and machine learning (ML) algorithms to propose a new clustering based day-ahead aggregated load forecasting approach. This four-step approach improves the day-ahead load forecast of a city. First, MV/LV transformer loadings are clustered based on the shape of their load pattern. Second, a gradient boosting algorithm is used to forecast the load of each cluster and calculate the related feature importance. Third, feature selection is applied to improve the forecast accuracy of each cluster. Finally, the day-ahead load forecast of all clusters are aggregated. The case study presented uses 519 measured MV/LV transformer loadings in a city to perform 30 day-ahead load forecasts. Compared against the day-ahead aggregated load forecast without clustering, the average normalized root mean squared error (NRMSE) reduced 12.7 %, the average mean absolute percentage error (MAPE) reduced 18.2 % and the average Pearson Correlation Coefficient (PCC) increased 0.37 %. The 95 % confidence interval of the difference between the average NRMSE, MAPE and PCC without clustering and with the proposed method indicates a statistically significant improvement in accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call