Abstract
Misdiagnosis rates are one of the leading causes of medical errors in hospitals, affecting over 12 million adults across the US. To address the high rate of misdiagnosis, this study utilizes 4 NLP-based algorithms to determine the appropriate health condition based on an unstructured transcription report. From the Logistic Regression, Random Forest, LSTM, and CNN-LSTM models, the CNN-LSTM model performed the best with an accuracy of 97.89%. We packaged this model into a authenticated web platform for accessible assistance to clinicians. Overall, by standardizing health care diagnosis and structuring transcription reports, our NLP platform drastically improves the clinical efficiency and accuracy of hospitals worldwide.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Scientific Research in Computer Science, Engineering and Information Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.