Abstract

In this study, an electroencephalogram (EEG) analysis system combined with feature selection, is proposed to enhance the classification of motor imagery (MI) data. It principally comprises feature extraction, feature selection, and classification. First, several features, including adaptive autoregressive (AAR) parameters, spectral power, asymmetry ratio, coherence and phase-locking value are extracted for subsequent classification. A genetic algorithm is then used to select features from the combination of the aforementioned features. Finally, the selected features are classified by support vector machine (SVM). Compared with "without feature selection" and back-propagation neural network (BPNN) on MI data from 2 data sets, the proposed system achieves better classification accuracy and is suitable for the applications of brain-computer interface (BCI).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call