Abstract

Abstract Recently, membrane filtration systems have become increasingly common in drinking water treatment plants. In this industry, preventing membrane fouling is of utmost importance. Many studies on the relationship between raw water components and membrane fouling have been performed in laboratory conditions. However, very few studies have analyzed the components of foulants on the fouled membrane as operated in actual drinking water treatment plants. By analyzing these components in plant-conditions, membrane fouling will be more effectively prevented. In this study, we analyzed the components of foulants extracted with 0.1 N NaOH from a fouled membrane operated in a drinking water treatment plant in Japan. Our analysis revealed that the main foulants were humic substances. In order to dissolve the accumulated humic substances, additional chemical cleaning was attempted with 500 ppm sodium hypochlorite. As a result, it was found that humic substances were dissolved and filtration resistance significantly decreased. Additionally, the removal of inorganic foulants was also greater after chemical cleaning with 500 ppm sodium hypochlorite, as inorganic foulants trapped within humic substances were released to the membrane surface as hydroxides by the additional sodium hypochlorite cleaning and were dissolved by the periodic citric acid cleaning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.