Abstract

The introduction of chimeric antigen receptor (CAR) T-cell therapy in acute lymphoblastic leukemia (ALL) has dramatically altered the landscape of treatment options available to children and adults with ALL. With complete remission induction rates exceeding 70% in most trials and FDA approval of one CD19 CAR T-cell construct in ALL, CAR T-cell therapy has become a mainstay in the ALL treatment algorithm for those with relapsed/refractory disease. Despite the high remission induction rate, with growing experience using CAR T-cell therapy in ALL, a host of barriers to maintaining long-term durable remissions have been identified. Specifically, relapse after, resistance to, or loss of long-term CAR T-cell persistence may all hinder CAR T-cell efficacy. In this review, we provide an overview of the current limitations which inform the design of the next generation of CAR T-cells and discuss advances in CAR T-cell engineering aimed to improve upon outcomes with CAR T-cell-based therapy in ALL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call