Abstract

This paper addresses the question whether forecasters could have been able to produce better forecasts by using the available information more efficiently (informational efficiency of forecast). It is tested whether forecast errors covariate with indicators such as survey results, monetary data, business cycle indicators, or financial data. Because of the short sampling period and data problems, a non parametric ranked sign test is applied. The analysis is carried out for GDP and its main components. The study differentiates between two types of errors: Type I error occurs when forecasters neglect the information provided by an indicator. As type II error a situation is labelled in which forecasters have given too much weight to an indicator. In a number of cases forecast errors and the indicators are correlated, though mostly at a rather low level of significance. In most cases type I errors have been found. Additional tests reveal that there is little evidence of institution specific as well as forecast horizon specific effects. In many cases, co-variations found for GDP are not refected in one of the expenditure side components et vice versa.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.