Abstract

Physiologically relevant simulations of blood flow require models that allow for wall deformation. Normally a fluid–structure interaction (FSI) approach is used; however, this method relies on several assumptions and patient-specific material parameters that are difficult or impossible to measure in vivo. In order to circumvent the assumptions inherent in FSI models, aortic wall motion was measured with MRI and prescribed directly in a numerical solver. In this way is not only the displacement of the vessel accounted for, but also the interaction with the beating heart and surrounding organs. In order to highlight the effect of wall motion, comparisons with standard rigid wall models was performed in a healthy human aorta. The additional computational cost associated with prescribing the wall motion was low (17%). Standard hemodynamic parameters such as time-averaged wall shear stress and oscillatory shear index seemed largely unaffected by the wall motion, as a consequence of the smoothing effect inherent in time-averaging. Conversely, instantaneous wall shear stress was greatly affected by the wall motion; the wall dynamics seemed to produce a lower wall shear stress magnitude compared to a rigid wall model. In addition, it was found that if wall motion was taken into account the computed flow field agreed better with in vivo measurements. This article shows that it is feasible to include measured subject-specific wall motion into numerical simulations, and that the wall motion greatly affects the flow field. This approach to incorporate measured motion should be considered in future studies of arterial blood flow simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call