Abstract
As an important platform of electronic commerce, blogs can greatly influence internet users' purchasing decisions. Spam, however, can substantially reduce blogs' positive impact on electronic commerce. This paper introduces SK, an alternative algorithm combining supervised learning (SVM) and unsupervised learning (K-means++) to detect blog spam. If either classifies a blog as spam, then the blog is assigned to the spam category. Feature selection includes term frequency, inverse document frequency, binary representation, stop words, outgoing links, advertiser content, and burst with keywords. Accuracy of each model was tested and compared in experiments with 3,000 blog pages from University of Maryland and 3,560 internet blogs. Findings suggest that combining the SVM algorithm and K-means++ clustering can increase accuracy of filtering spams by about 7% as compared to using just one of these methods. Strengths and weaknesses of various spam-filtering methods were discussed, providing considerations for businesses when choosing a spam filter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Data Analysis Techniques and Strategies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.