Abstract
One of the key issues that must be addressed in the biofuel production based on sugarcane industry is the energy consumption of the process. Process energy demand has direct impact on the amount of lignocellulosic material available for use as feedstock for second generation ethanol production. A significant fraction of the energy consumption in bioethanol production occurs in the purification step, since conventional fermentation systems employed in the industry require low substrate concentration and, consequently, produce wine of low (around 8.5°GL) ethanol content that must be distilled in order to meet product specifications. In this study alternatives to the conventional fermentation processes employed in the industry (low temperature fermentation and vacuum extractive fermentation) were assessed, in the context of a large scale sugarcane autonomous distillery, through computer simulation. Electricity consumption and lignocellulosic material surplus on each case were evaluated. It is shown that the alternative fermentation processes allow a significant reduction on vinasse generation and increases ethanol production when compared with conventional fermentation, but increases electricity consumption (for the extractive fermentation) or steam consumption (for low temperature fermentation); when vinasse concentration is considered in the conventional process, steam consumption in the extractive fermentation is also significantly smaller.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.